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Summary

The goal of this project was to develop new mathematical and computational techniques for
quantifying the errors in seismic event locations, with the goal of improving on the epicentral
confidence ellipses and focal depth confidence intervals in conventional use. The primary focus
of the project was to develop a rigorous approach to the effects of model errors, or errors in
the travel-time predictions calculated from an assumed velocity model for the Earth. The
approach that was investigated associates model errors with the uncertainty in path travel-
time corrections that are inferred from a calibration analysis. This naturally leads to the idea
of analyzing location uncertainty in the context of a joint inverse problem that treats event
location and travel-time calibration as coupled problems.

A primary accomplishment of the project was a general theoretical formulation of the joint
location/calibration inverse problem that applies to a wide range of situations, including the use
of non-Gaussian distributions for pick errors, the accommodation of non-GT0 calibration events,
and the use of a general parameterization of travel-time corrections that subsumes a variety of
calibration techniques previous researchers have considered. The latter includes simple station-
specific time terms, station-specific travel-time correction surfaces, and 3D velocity models.
The formulation leads to a general expression for event location confidence regions based on
the statistical framework of hypothesis testing with likelihood-ratio statistics.

A second accomplishment of the project was to implement the theoretical formulation for
the case of time-term corrections as a proof of concept of the joint inversion uncertainty ap-
proach. Applications performed with data from Nevada Test Site explosions illustrate the effects
of model errors on event location confidence regions and their dependence on the location ac-
curacy of calibration events. Despite attempts to increase the computational efficiency of the
joint inversion approach, these applications also indicated that the approach is not feasible for
complex methods of travel-time calibration like 3-D velocity tomography.

The third accomplishment of the project was the development of an approximate, but much
more efficient, version of the new uncertainty approach that follows the traditional factoriza-
tion of travel-time calibration and event location into a two-stage process. The approximation
assumes that the uncertainty in travel-time corrections estimated in a calibration analysis can
be represented by a Gaussian probability distribution. The generality of the theoretical formu-
lation is otherwise preserved. To test the two-stage approach, new algorithms were developed
for calculating calibration uncertainty (stage one) and employing it in the calculation of loca-
tion confidence regions (stage two). Application of these algorithms to the Nevada Test Site
data, assuming time-term corrections, demonstrate the much greater efficiency of the two-stage
approach and suggest that the approach is feasible for the case of tomographic calibration.
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Chapter 1

Introduction

The assessment of errors in seismic event locations remains a challenging problem for nuclear
monitoring research. Theoretical treatments of location uncertainly have generally focused
on the effects of observational, or pick, errors in the seismic arrival times (or other observed
attributes) used in locating an event. However, it has been recognized for a long time that
an equal or larger source of location uncertainty, especially when arrivals at regional distances
are involved, is the error in the travel-time predictions that are calculated with models of the
Earth’s velocity structure. Formulations of location uncertainty have generally lacked a rigorous
treatment of these model errors, using instead the ad hoc assumption that they simply augment
the pick errors.

The project reported here has attempted to develop a rigorous, and general, treatment of
model errors by linking them to the errors incurred in the calibration of seismic travel-times.
This association leads naturally to consideration of a joint inverse problem in which arrival
time data from multiple events are used to infer the event locations together with calibration
parameters that generate corrections to the model-based travel-time predictions. Taking one
of the multiple events to be the target of investigation, and the others as historical calibration
events, an error analysis performed on the joint location/calibration inverse problem implicitly
accounts for the effects of model errors on the target event location. The joint inversion approach
also provides a means to address the important issue of how errors in the locations of calibration
events influence the location uncertainty for the target event.

The next chapter of this report formulates the problem of event location uncertainty and
reviews the classical theory of elliptical confidence regions on locations, which follows from the
linearization of the travel-time forward problem and the assumption that pick errors obey a
Gaussian probability distribution. The linear/Gaussian theory is then generalized based on the
statistical framework of maximum-likelihood estimation and hypothesis testing, and numerical
techniques for the evaluation of non-elliptical confidence regions are described.

Chapter 3 of the report extends the theory and algorithms from single-event location to
multiple-event location, i.e. the joint location/calibration problem. The resulting approach is
illustrated with examples that use data from well-located explosions at the Nevada Test Site.

Chapter 4 presents a two-stage method that, following conventional practice, separates the
calibration and location aspects of the joint inverse problem. The separation is developed
under a specific approximation to the full theory; namely, that the uncertainty in calibration
parameters can be represented by a multivariate Gaussian distribution. Appropriate algorithms
to implement the two-stage approach are presented and illustrated with the Nevada Test Site
data. The report ends with some conclusions and suggestions for future work.
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Chapter 2

Uncertainty Analysis in Single-Event
Location

2.1 The Single-Event Location Problem and Approaches to Un-
certainty

Most event location algorithms infer the hypocenter and origin time of an event from a set
of arrival times of various seismic phases observed at various stations of a network. We will
denote the arrival-time data di for i = 1, . . . , n, where n is the total number of station/phase
combinations that have been observed. Letting x denote the event hypocenter and t its origin
time, we can express the single-event location problem as

di = Ti(x) + t + ei, i = 1, . . . , n, (2.1)

where ei is the observational error in di, and Ti is a function that predicts the travel-time of
the ith station/phase pair as a function of the event hypocenter. The travel-time prediction
functions are usually based on a velocity model for the Earth. In matrix/vector notation we
can write equation (2.1) as

d = T(x) + 1t + e, (2.2)

where each element of the column vector 1 is unity.
A solution of the single-event location problem is commonly taken to comprise point esti-

mates of the event location parameters, which we will denote (x̂, t̂), together with a probabilistic
description of the uncertainty in these estimates. The uncertainty description follows from an
assumed probabilistic model for the observational errors, ei. There are a number of accepted
ways to describe uncertainty. For example, if x̂ is found to be a Gaussian random variable, its
uncertainty is well-characterized by a variance-covariance matrix, V, such that

E[(x̂ − x)(x̂ − x)T ] = V, (2.3)

where E[ ] denotes the mathematical expectation of a random variable. The presumption here
is that x̂ is an unbiased estimate of x, or E[x̂] = x. There is no guarantee, however, that an
unbiased Gaussian estimate of x exists or, if it does, that its variance is independent of x.

A more general description of uncertainty is accomplished with Neyman-Pearson confidence
regions on the unknown parameters or subsets thereof. A confidence region on x, for example,
is a region of x-space, calculated from the observed data, to which we can assign a probability of
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including the true hypocenter x. Letting β be that probability, or confidence level (e.g. β = 0.9
for a 90% confidence region), and letting Xβ(d) be its associated confidence region, we have

Prob [x ∈ Xβ(d)] = β. (2.4)

The probability operator used here is that which is induced by the assumed error model for e
and, hence, d.

Bayesian inference provides another approach to uncertainty. In this approach, the location
parameters are considered to be random variables, and a complete solution of the inverse
problem is embodied in their joint posterior probability density function (p.d.f.), denoted f [x, t |
d] (where “|d” indicates conditioning on the data vector). From the posterior distribution, a
point estimate of x is available as the MAP (maximum a posteriori) estimate:

f [x̂ | d] = max
x

f [x | d], (2.5)

where f [x | d] is the marginal posterior p.d.f. of x, defined as

f [x | d] =

∫
dt f [x, t | d]. (2.6)

A Bayesian confidence region can be defined from the posterior p.d.f. with
∫

x∈Xβ(d)
dx f [x | d] = β (2.7)

but such confidence regions do not necessarily obey the confidence property stated in equation
(2.4).

This project has focused on Neyman-Pearson confidence regions as a framework for event
location uncertainty analysis. Before describing this approach in a general context, we describe
it for the special case most often assumed in seismic event location studies.

2.2 Gaussian/Linear Confidence Regions

The traditional solution to the single-event location problem consists of least-squares estimates
of the event parameters. These minimize a data-misfit function given by

Ψ(x, t;d) =

n∑

i=1

wi (di − Ti(x) − t)2 , (2.8)

where the wi are prescribed weights. We can also write the least-squares misfit function as

Ψ(x, t;d) = (d−T(x) − 1t)TW(d −T(x) − 1t) (2.9)

with the diagonal matrix W containing the weights:

W =




w1

w2

. . .

wn


 . (2.10)

The least-squares parameter estimates satisfy

Ψ(x̂, t̂;d) = min
x,t

Ψ(x, t;d). (2.11)
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Numerically, the minimization of Ψ is typically performed with a Gauss-Newton algorithm, as
proposed originally by Geiger (1912) and re-formulated by Flinn (1965).

Flinn (1965) also developed the theory for location confidence regions in the least-squares
setting, and we redevelop this result here as a prelude to a more general theory. Flinn derives
Neyman-Pearson confidence regions in a hypothesis testing framework. The gist of this approach
is as follows. Given an arbitrary hypocenter x, we take as a null hypothesis that the true event
hypocenter is x. If, based on a test statistic τ(x,d), we cannot reject the null hypothesis at
some level of confidence, we take x to be a point inside the confidence region at that level.

Flinn applied this approach with the underlying assumption that the observational errors are
zero-mean, Gaussian random variables whose standard deviations are known within a constant
factor, σ. The probability density function (p.d.f.) of ei in this case can be written as

f [ei] =
1

(2π)1/2σνi
exp

{
−

1

2

(
ei

σνi

)2
}

, (2.12)

where νi is a nominal standard deviation assigned to ei. With this assumption, and assum-
ing that the errors are statistically independent (uncorrelated) the weights for the data-misfit
function are naturally set as

wi ∼ ν−2
i . (2.13)

Location confidence regions can be defined on all the event location parameters (x and t) in
four-dimensional space, or on any subset of the parameters. Here we will consider confidence
regions on the hypocenter x, thus treating t as a “nuisance” parameter. For these, Flinn (1965)
applied hypothesis testing with the test statistic given by

τ(x,d) =
1

σ̂2

[
min

t
Ψ(x, t;d) − Ψ(x̂, t̂;d)

]
, (2.14)

where (x̂, t̂) is the least-squares location solution and σ̂ is an estimate of σ which Flinn took to
be

σ̂2 =
1

n − 4
Ψ(x̂, t̂;d). (2.15)

We see that τ compares the data misfit achieved by a given hypocenter x (allowing t to adjust)
to the minimum misfit achieved by any x. A confidence region on x at the β confidence level,
or Xβ(d), comprises those points x yielding values of the test statistic below some cutoff. That
is,

Xβ(d) = {x : τ(x,d) ≤ τβ} , (2.16)

where τβ is a critical value of the test statistic satisfying

Prob
[
τ(x,d) ≤ τβ

]
= β. (2.17)

Equation (2.16) can be interpreted to mean that x can be rejected as the true hypocenter if
its relative data misfit, as measured by τ(x,d), is too large. Equation (2.17) states that the
cutoff value for this rejection, τβ, marks the β point on the cumulative probability distribution
of τ(x,d), as determined under the null hypothesis. This choice for the cutoff ensures the
confidence property of equation (2.4). That is, the true hypocenter will be rejected with prob-
ability 1 − β or, stated conversely, the confidence region will include the true hypocenter with
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probability β. This interpretation presumes, however, that the distribution of τ(x,d) does not
depend on the parameters t and σ, which we will see is indeed the case in the Gaussian/linear
analysis.

To obtain the confidence region on x in a convenient form we need a numerical value for
τβ and a way to parameterize the points satisfying (2.16). These requirements are easily met
under the Gaussian error assumption if we make the additional assumption that the travel-time
functions can be well-approximated by a linear expansion about the least-squares estimate:

T(x) = T(x̂) + A(x − x̂). (2.18)

Here, A is a Jacobian matrix containing derivatives of the travel-time functions, evaluated at
x = x̂:

Aij =
∂Ti(x)

∂xj

∣∣∣∣
x=x̂

. (2.19)

Given (2.18), the location problem becomes a linear inverse problem (the dependence of t is
exactly linear), and standard methods of Gaussian/linear analysis can be applied to determine
τ and its probability distribution (e.g., Anderson, 1965). We report the results.

Under the linearization of T, the test statistic can be expressed as

τ(x,d) =
1

σ̂2
(x − x̂)TATQTWQA(x− x̂), (2.20)

where Q is the projection matrix given by

Q = I−
1

1TW1
11TW. (2.21)

Given that e is Gaussian, τ is the (scaled) ratio of two independent chi-squared random variables
having 3 and n−4 degrees of freedom, respectively. τ itself (divided by 3) is thus F distributed
with these degrees of freedom, and we find that

τβ = 3Fβ(3, n − 4). (2.22)

Fβ(k,m) denotes the β-point of the F distribution for k and m degrees of freedom. The
confidence region on x at confidence level β is thus given by

(x − x̂)TATQTWQA(x − x̂) ≤ 3 σ̂2 Fβ(3, n − 4). (2.23)

We see from equation (2.22) that τβ does not depend on any of the unknown parameters
(x, t, σ). Equation (2.23) therefore describes the interior of an ellipsoid in hypocenter space,
centered at the least-squares estimate x̂. The parameters of the ellipsoid can be determined
from the eigenvectors and eigenvalues of the matrix ATQTWQA. The inverse square-root of
the eigenvalues, multiplied by the square-root of the right-hand side of (2.23), are the semi-axis
lengths of the ellipsoid.

An alternative to Flinn’s (1965) results was proposed by Evernden (1969) for the case in
which σ is taken to be a known quantity. In this case, τ(x,d) in equation (2.20), with σ̂ set
to the known σ, becomes chi-squared distributed with 3 degrees of freedom and the confidence
region becomes

(x − x̂)TATQTWQA(x − x̂) ≤ σ2 χ2
β(3). (2.24)

The confidence region scaling is smaller when the chi-squared distribution is used for τ , sig-
nifying that a loss of information occurs when σ is not known and has to be estimated from
the data. Table 2.1 shows the ratio of confidence region scaling factors implied by Flinn’s and
Evernden’s methods.
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Table 2.1: Ratio of F to χ2 scaling of hypocenter confidence regions

Ratio =

[
3Fβ(3, n − 4)

χ2
β(3)

]1/2

n β = 90% β = 95%

5 5.071 9.100
6 2.097 2.712
8 1.418 1.591
10 1.256 1.351
12 1.185 1.249
15 1.130 1.174
20 1.087 1.115
30 1.052 1.069
50 1.029 1.038

2.3 Non-Elliptical Confidence Regions

In previous work (e.g. Rodi and Toksöz, 2000), we generalized the linear/Gaussian theory
for location confidence regions to allow non-Gaussian probability distributions for pick errors,
to accommodate nonlinear constraints on location parameters, and to take account of the
nonlinearity of the travel-time functions. We summarize this generalization here.

2.3.1 Likelihood function for arrival data

We still assume the pick errors are statistically independent but, following Billings et al. (1994),
allow each to be distributed with a generalized Gaussian distribution, whose probability density
function (p.d.f.) is given by

f [ei] =
1

K(p)σi
exp

{
−

1

p

∣∣∣∣
ei

σi

∣∣∣∣
p}

, p ≥ 1, (2.25)

where σi is a standard error and

K(p) = 2p1/pΓ(1 + 1/p). (2.26)

(Γ is the gamma function.) When p = 2, the p.d.f. is Gaussian (normal) with a mean of zero
and variance of σ2

i . When p = 1, f [ ] is a Laplace distribution (two-sided exponential). Like
we did earlier, we assume that the standard errors are known within a scale parameter σ:

σi = σνi (2.27)

with the νi being known, nominal standard errors.
Given that the errors ei are independent, the joint p.d.f. of the observed data di is determined

by the product of the f [ei], i.e.

f [d1, . . . , dn;x, t, σ] =

n∏

i=1

f [ei = di − Ti(x) − t]. (2.28)
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Considered as a function of the unknown problem parameters, the data p.d.f. serves as a like-
lihood function. Equation (2.25) implies that the negative logarithm of the likelihood function
is

Λ(x, t, σ;d) = n log K(p) +
n∑

i=1

log νi + n log σ +
1

pσp
Ψ(x, t;d) (2.29)

where the data-misfit function now generalizes equation (2.8) as

Ψ(x, t;d) =
n∑

i=1

|di − Ti(x) − t|p /νp
i . (2.30)

We will often refer to the function Λ simply as the penalty function to avoid the more clumsy
negative log-likelihood.

The generalization of the least-squares solution to the location problem is the maximum-
likelihood solution, which minimizes the penalty function:

Λ(x̂, t̂, σ̂;d) = min
x,t,σ

Λ(x, t, σ;d). (2.31)

We have included σ̂, the maximum-likelihood estimate of σ, as part of the solution, replacing
the unbiased estimate considered by Flinn (1965).

In practice, the minimization in equation (2.31) is performed over a restricted range of
parameter values. Doing so effects hard parameter constraints which can represent important
prior information, e.g. preventing event locations above the Earth’s surface or below a maximum
credible depth. Additionally, it is usually credible to constrain σ based on knowledge of the data
processing procedures for picking arrival times. In the rest of this report, it will be understood
that the minimization of a penalty function is subject to appropriate a priori constraints on
the free parameters.

2.3.2 Neyman-Pearson confidence regions

Our more general formulation follows the Gaussian/linear uncertainty analysis described above
and defines confidence regions in terms of hypothesis testing, as per equations (2.16) and (2.17).
We now define the test statistic more generally as the logarithm of a likelihood ratio. For a
confidence region on x we have

τ(x,d) = min
t,σ

Λ(x, t, σ;d) − Λ(x̂, t̂, σ̂;d), (2.32)

where Λ is the negative log-likelihood function of equation (2.29). We can also write this as

τ(x,d) = Λ̃(x;d) − Λ̃(x̂;d), (2.33)

where Λ̃ is a “reduced” penalty function that is, for any fixed x, minimized with respect to t
and σ:

Λ̃(x;d) = min
t,σ

Λ(x, t, σ;d). (2.34)

We note that this statistic, in the Gaussian case (p = 2), does not default to the statistic used
by Flinn (1965) (equation (2.14)). However, the statistics are equivalent in this situation and
lead to the same confidence region for any β.

8



When the pick errors are not Gaussian (p 6= 2), and accepting the travel-time functions
Ti as nonlinear, we cannot dismiss the possibility that the distribution of τ(x,d) depends on
some or all of the problem unknowns. Therefore, we now allow τβ to depend on the unknown
parameters and replace equation (2.16) with

Xβ(d) = {x : τ(x,d) ≤ τ̃β(x)} , (2.35)

where

τ̃β(x) = max
t,σ

τβ(x, t, σ). (2.36)

This differs from equation (2.16) in two regards. First, the dependence of τβ on x lends a more
complex nature to the inequality that delimits a confidence region. Second, the dependence on t
and σ implies that the null hypothesis being tested (that x is the true hypocenter) depends on t
and σ as nuisance parameters. Equations (2.35) and (2.36) define a worst case confidence region
for this situation, i.e., the region is the largest that any values for the nuisance parameters can
yield. A consequence of this definition is that the confidence property of equation (2.4) is not
guaranteed to hold. However, a weaker version of the property does hold:

Prob
[
x ∈ Xβ(d)

]
≥ β. (2.37)

In this case one can state that the confidence region Xβ(d) contains the true hypocenter with
a probability of at least β.

2.3.3 Confidence regions on epicenter and focal depth

While we have thus far presented our methodology with respect to hypocentral confidence re-
gions, and will continue to do so, we pause to show how the methodology applies to confidence
regions on other event parameters. To do this, we separate the problem parameters into two
types. The first are target parameters whose uncertainty we wish to characterize. The re-
maining parameters are nuisance parameters, which are not of interest but whose effect on the
data cannot be ignored. Denoting the target parameters as components of a vector p, and the
nuisance parameters as components of q, our discussion so far has focused on the situation

p = x (2.38)

q = (t, σ). (2.39)

Denoting x = (θ, φ, z), where θ, φ and z are latitude, longitude and depth, respectively, we can
consider confidence regions on the event epicenter (θ, φ) by letting

p = (θ, φ) (2.40)

q = (z, t, σ), (2.41)

and on the event focal depth by letting

p = z (2.42)

q = (θ, φ, t, σ). (2.43)

Our uncertainty formulation transforms to p and q as follows. First, we re-denote the
penalty function as Λ(p,q;d) and the test statistic for hypothesis testing as τ(p,d). We have

τ(p,d) = Λ̃(p;d) − Λ̃(p̂;d), (2.44)
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where (p̂, q̂) is the maximum-likelihood solution and

Λ̃(p;d) = min
p

Λ(p,q;d). (2.45)

The confidence region on p at confidence level β is then given by

Pβ(d) = {p : τ(p,d) ≤ τ̃β(p)} (2.46)

with

τ̃β(p) = max
q

τβ(p,q). (2.47)

We will resume the description of the methodology for hypocentral confidence regions, cor-
responding to the case of equations (2.38) and (2.39).

2.4 Numerical Algorithm for Confidence Regions

Our general assumptions do not permit an analytic solution for τ̃β in equation (2.36) or a simple
geometric description of the confidence region given by equation (2.35). To work around this,
Rodi and Toksöz (2000) devised a numerical approach to computing and representing event
location confidence regions, which we now describe.

The algorithm involves two steps: (1) mapping τ(x,d) on a grid in x-space, and (2) for
given confidence level β, estimating τ̃β(x) for each point on the grid. After performing these
two steps, the confidence region at the β level is represented by flagging the grid points for
which τ(x,d) ≤ τ̃β(x).

The first step, which we will call likelihood mapping, entails minimizing the penalty function
with respect to t and σ with x fixed, repeating for each x on the hypocenter grid.

In this project we considered two ways of performing the second step, which we now discuss.

2.4.1 Monte Carlo simulation

For any assumed value of σ (within prescribed bounds, if any), one can generate pseudo-random
realizations of the error vector e based on the probability distribution for errors prescribed by
equations (2.25) and (2.27). We will denote such a realization emc(σ). Then, for given x and t,
a realization of data is given by

dmc = T(x) + 1t + emc(σ). (2.48)

A realization of τ is obtained from this data as

τmc(x,dmc) = Λ̃(x;dmc) − min
x

Λ̃(x;dmc). (2.49)

We see that the computation of τmc entails performing event location (minimization of the
penalty function) using dmc as synthetic data. Generating many realizations of τ in this way,
one can use their histogram to estimate the critical statistic value, τβ(x, t, σ), for particular
values of β. We have found that on the order of 300 realizations of τ mc provide adequate
accuracy for τβ.

Strict adherence to equations (2.35) and (2.36), however, requires performing a Monte Carlo
simulation, not just for each grid point x, but for a sufficient number of t and σ values to be able
to find a maximum of τβ over these variables. The Monte Carlo approach thus becomes very

10



computationally intensive. We have therefore implemented this approach with the major sim-
plification that the simulation be performed with only one combination of the parameters. The
parameter values used are the maximum-likelihood estimates. Thus, synthetic data realizations
are generated as

dmc = T(x̂) + 1t̂ + emc(σ̂), (2.50)

and the formula for a confidence region becomes

Xβ(d) =
{
x : τ(x,d) ≤ τβ(x̂, t̂, σ̂)

}
. (2.51)

We point out that other investigators, notably Wilcock and Toomey (1991), have used the same
simplification in similar applications.

Ignoring the dependence of τβ on origin time is quite justified since this dependence arises
only if bounds on t are invoked, which is not normally done. The dependence on x and σ is not
so easily dismissed. We can infer from the Gaussian/linear analysis that the dependence on x
and σ will be significant only if the nonlinearity of the travel-time functions, Ti, is significant
or when the generalize Gaussian order p differs significantly from 2.

2.4.2 Likelihood integration

The Bayesian approach to uncertainty suggests an alternative approximation to τ̃β(x). Let
us assume a vacuous prior distribution on the unknown parameters, or f [x, t, σ] ∝ 1. The
likelihood function then becomes an unnormalized posterior p.d.f. on the parameters, or

f [x, t, σ | d] = K(d) e−Λ(x,t,σ;d), (2.52)

where K(d) is a normalizing factor. A Bayesian confidence region on x (or other target pa-
rameter) is determined by the marginal posterior p.d.f. of x, as we indicated earlier in equation
(2.7). Let us instead consider a quasi-Bayesian approach in which the marginal posterior of x
is replaced with a distribution that is maximized with respect to nuisance parameters. Define

f̃ [x | d] = max
t,σ

f [x, t, σ | d]. (2.53)

A quasi-Bayesian confidence region on x satisfies, in analogy with (2.7),
∫

x∈Xβ(d)
dx f̃ [x | d] = β. (2.54)

Given (2.33) and (2.34), it is not hard to show that

f̃ [x | d] = K(d) e−
eΛ(x;d) = K ′(d) e−τ(x;d), (2.55)

where K ′(d) is a different normalizing factor. If we require that Xβ(x) discriminate on the
p.d.f. value—i.e.

Xβ(d) =
{
x : f̃ [x | d] ≥ fβ

}
, (2.56)

for some threshold fβ—equation (2.55) implies

Xβ(d) = {x : τ(x,d) ≤ τβ} , (2.57)
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Figure 2.1: Confidence intervals on event depth in a fictitious problem involving a direct observation of
depth, which is either Gaussian (left panel) or Laplace (right) distributed, with a variance of (10 km)2

in each case. Three types of confidence limits (at β = 90%) are shown, each as a function of the depth
observation itself (vertical axis): exact Neyman-Pearson (green line), approximate Neyman-Pearson (red
dots), and Bayesian (blue dots). For a given value of observed depth, the confidence interval of each
type consists of the range of true depth between the confidence limits.

where the cut-off τβ satisfies
∫

τ(x,d)≤τβ

dx e−τ(x,d) = β

∫

τ(x,d)<∞

dx e−τ(x,d). (2.58)

This definition of τβ offers an alternative approximation to τ̃β(x) of the exact Neyman-Pearson
approach.

A numerical algorithm for computing quasi-Bayesian confidence regions shares the likelihood
mapping step with the approximate Neyman-Pearson method, but replaces the Monte-Carlo
simulation step with a much simpler and more efficient process we call likelihood integration.
This process creates a histogram of the likelihood function values found in the mapping step.
The histogram allows one to find approximate solutions of equation (2.58) for τβ as a function
of β. While the likelihood integration process is much faster computationally than Monte Carlo
simulation, it does place some additional burden on the mapping step. The mapping must be
sufficiently thorough to yield accurate approximations to the integrals in equation (2.58).

We make two more observations about approximate Neyman-Pearson and quasi-Bayesian
confidence regions. First, neither method guarantees the confidence property, or even its weaker
version in equation (2.37). Second, in the Gaussian/linear problem, the methods coincide with
each other and with the exact Neyman-Pearson result.

2.4.3 Comparison in a simple situation

The difference between exact Neyman-Pearson, approximate Neyman-Pearson and quasi-Bayesian
confidence regions in the presence of nonlinearity is illustrated in Figure 2.1. This is a “toy”
problem involving one unknown parameter—event depth—and a single datum that is taken to
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be a direct, unbiased estimate of the depth. We can state this inverse problem as

d = z + e, (2.59)

where d represents the observed depth. We introduce nonlinearity into the problem in the
form of the hard constraint that the true event depth (horizontal axes in the figure) cannot be
negative, even though the observed depth (vertical axes) might be, such as when arrival times
yield an “airquake” as the best-fitting solution for an event hypocenter. For any probability
distribution of e that is symmetric about zero (f [e] = f [−e]), the maximum-likelihood estimate
of z, subject to the positivity constraint, is

ẑ = max(d, 0). (2.60)

Intuitively, the positivity constraint should affect a confidence interval on depth when the
observed depth is negative or near z = 0, and we can see from the figure that this is the case.
The results in the left panel assumes that the error in the observed depth (e) has a Gaussian
distribution (p = 2), while the right panel assumes that e has a Laplace distribution (p = 1).

The green lines in each panel of Figure 2.1 trace the confidence limits for exact Neyman-
Pearson (N-P) confidence intervals, which possess the confidence property. The red dots are
the approximate Neyman-Pearson confidence limits that result when the critical value τβ is
considered only for the maximum-likelihood estimate of depth (as per equation (2.51)). The
blue dots mark the quasi-Bayesian confidence limits, which are actually proper Bayesian limits
in this toy problem since no nuisance parameters are involved. Generally, the approximate
Neyman-Pearson intervals are smaller than the Bayesian intervals for shallow and negative
depth observations. Which one better represents the exact N-P intervals (green lines) depends
on the type of error distribution used.

2.5 Examples for a Nevada Test Site Event

Figure 2.2 shows an example of our numerical confidence region algorithm applied to a Nevada
Test Site (NTS) explosion at the Pahute Mesa testing area. The calculations were done using
six Pn arrivals for the event, assuming Gaussian pick errors with know variance. The left panel
shows the event-station geometry. The center panel shows the log-likelihood function mapped
on an epicenter grid. The right panel shows the confidence regions, at three confidence levels,
that result after performing the likelihood integration step to find τβ. The confidence regions
were computed with the assumption that the event focal depth is known (fixed). We see in
the right panel that the epicentral confidence region for each confidence level is very close to
elliptical in shape, indicating that nonlinearity of the travel-time forward model does not have
a significant effect.

Figure 2.3 shows numerical confidence regions for the same Pahute Mesa event computed
with various non-Gaussian pick error distributions. The confidence regions become less elliptical
as the error distribution becomes increasingly less Gaussian (left to right).

13



−118 −116 −114 −112
34

35

36

37

38

39

40

41
BMN

ELK

LAC

LDS

MNV

NEL

Longitude

La
tit

ud
e

East (km)

N
or

th
 (

km
)

−5 0 5

−6

−4

−2

0

2

4

6

East (km)

N
or

th
 (

km
)

−5 0 5

−6

−4

−2

0

2

4

6

Figure 2.2: Log-likelihood function and confidence regions for a Pahute Mesa explosion, derived from
6 Pn arrivals with the pick error distribution assumed to be Gaussian (p = 2). Left: Schematic map
showing the event epicenter (red dot) and station locations (blue dots). Center: Log-likelihood function
mapped on an epicenter grid. Right: Epicenter confidence regions (determined from the likelihood
function) for 90, 95 and 98% confidence (blue, green and red, respectively). In the right two panels, the
black circle marks the maximum-likelihood estimate for the event epicenter, and the white circle is its
GT0 epicenter (from Walter et al., 2003).
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Figure 2.3: Numerical confidence regions for the same Pahute Mesa explosion as in Figure 2.2, computed
with non-Gaussian error distributions: p = 1.5 (left), p = 1.25 (center) and p = 1 (right).
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Chapter 3

Model Errors and the Joint
Location/Calibration Inverse
Problem

3.1 Model Errors

We extend equation (2.1) to include an additional term, ci, which represents a correction to the
travel-time predicted by the function Ti:

di = Ti(x) + t + ci + ei, i = 1, . . . , n. (3.1)

Assuming they are not known, the travel-time corrections ci play the role of prediction errors,
or model errors, in the event location problem. Defining a correction vector,

c =
(
c1 c2 · · · cn

)T
, (3.2)

we can write (3.1) in vector notation as

d = T(x) + 1t + c + e. (3.3)

Equation (3.1) is a hopelessly ill-posed inverse problem unless we impose some sort of prior
constraints on the ci. A common way of doing this is to assume the model and pick errors
are both Gaussian random variables and combine them as a single error. Each data variance,
σ2

i , is then reinterpreted as the variance of the error sum, ci + ei. This approach ignores the
different natures of pick and model errors and thus must be considered ad hoc. For example,
there is no physical basis for assuming that the model errors for different station/phase pairs
are necessarily statistically independent, as is usually assumed for pick errors. If we consider
the model errors as distinct from the pick errors, we have the opportunity to constrain them
with a less restrictive probability model.

A more general approach is to retain the ci as explicit unknowns in the inverse problem
and constrain them with prior information in the form of a prior probability density function.
We allow this p.d.f. to depend on the target-event hypocenter and denote it as f [c;x]. In the
maximum-likelihood formulation, the prior p.d.f. on c is included by augmenting the penalty
function for the arrival data with a prior penalty function for c, given by

Φc(c;x) = − log f [c;x]. (3.4)
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Thus, the likelihood function for the single-event location problem, including model errors,
becomes

Λ(x, t, c, σ;d) = n log K(p) +

n∑

i=1

log νi + n log σ +
1

pσp
Ψ(x, t, c;d) + Φc(c;x), (3.5)

where the data-misfit function is now

Ψ(x, t, c;d) =
n∑

i=1

|di − Ti(x) − t − ci|
p /νp

i . (3.6)

Given this, the theory of Section 2.3 applies to the new problem almost as written, but with
c adding to the list of nuisance parameters. The maximum-likelihood solution now satisfies

Λ(x̂, t̂, ĉ, σ̂;d) = min
x,t,c,σ

Λ(x, t, c, σ;d). (3.7)

The reduced penalty function is now given by

Λ̃(x;d) = min
t,c,σ

Λ(x, t, c, σ;d). (3.8)

The test statistic for hypocenter confidence regions is still expressed by equation (2.33), and the
numerical methods described in Section 2.4 still apply. In the case of Monte Carlo simulation,
synthetic data are computed as

dmc = T(x̂) + 1t̂ + ĉ + emc(σ̂). (3.9)

The difficult issue, which was the focus of this project, is how to choose the prior penalty
function Φc(c;x). The approach we took was to consider Φc to be the posterior negative log-
likelihood that derives from a calibration analysis.

3.2 Calibration and the Prior Likelihood on Corrections

We assume that calibration is performed with seismic arrival-time data observed from a set
of m calibration events. In analogy with equation (3.1), then, the calibration problem can be
expressed as

dij = Tij(xj) + tj + cij + eij , i = 1, . . . , nj, j = 1, . . . ,m. (3.10)

We do not assume that all observable station/phase combinations have actually been observed
for every calibration event, or for the target event. Therefore, the particular station/phase
indexed by a given value of i may differ between events. In vector notation, equation (3.10)
becomes

dj = Tj(xj) + 1tj + cj + ej, j = 1, . . . ,m, (3.11)

where, for a given j, the vectors have nj components.
We also do not assume that the calibration events are necessarily GT0 events having per-

fectly known hypocenters and origin times. In general, therefore, the unknowns in the calibra-
tion inverse problem are the m event locations, (xj , tj), and

∑m
j=1 nj path travel-tine corrections,

cij . With both correction and location parameters both unknown, the calibration problem may
also be referred to as the joint location/calibration problem, although we reserve that term for
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the situation in which a target event location is involved. Additionally, one may refer to the
problem as multiple-event location.

As in the single-event location problem for a target event, we assume that the observational
errors in the calibration problem, eij , have a generalized Gaussian distribution of order p. Unlike
the target-event problem, however, we take the standard errors, σij, to be known completely.
The data misfit function for the jth calibration events is thus given by

Ψj(xj , tj, cj ;dj) =

nj∑

i=1

|dij − Tij(x) − tj − cij |
p /σp

ij . (3.12)

3.2.1 Parameterization of corrections

To link the target-event location problem of equation (3.1) and calibration problem of equation
(3.10), we must represent the path travel-time corrections, ci and cij , with a common parame-
terization. Let us consider four such parameterizations in their order of increasing complexity.
To facilitate this discussion, we will refer to the target event with the index j = 0, allowing
equation (3.1) to be expressed by equation (3.10). Therefore, the corrections ci are alternatively
denoted as ci0, and the target-event location parameters (x, t) as (x0, t0).

First, in the “basic” multiple-event location problem (e.g. Jordan and Sverdrup, 1981; Pavlis
and Booker, 1983), travel-time corrections are assumed to be common to the events but different
between station/phase combinations. If there are ` unique combinations, the relevant correction
parameters are time terms, ak, k = 1, . . . , `, such that

cij = akij
, (3.13)

where kij denotes the station/phase pair associated with the ith observation for the jth event.
A second possible parameterization, introduced by Schultz et al. (1998), comprises a cor-

rection “surface,” or function, specific to each station/phase. Each surface, ak(x), defines a
continuous dependence of the travel-time correction for an event on the event hypocenter. In
this case we have

cij = akij
(xj). (3.14)

A third example of a correction parameterization is the vector “mislocation function,” a(x),
introduced by Rodi et al. (2005) and Murphy et al. (2005). In this case,

cij = pij(xj ,yij) · a(xj) + qij(xj ,yij) · a(yij), (3.15)

where yij is the station position associated with the ijth observation, and where pij and qij are
slowness vectors (travel-time gradients) at the event and station locations, respectively. Unlike
equations (3.13) and (3.14), this parameterization ensures source-receiver reciprocity (c ij is the
same if xj and yij are swapped).

Finally, we can relate travel-time corrections to 3-D velocity anomalies in the Earth. Under
the linear approximation to the velocity dependence of travel times, the tomographic parame-
terization of travel-time corrections is expressed as

cij =

∫
dx bij(x;xj) δu(x), (3.16)

where bij(x;xj) is a travel-time sensitivity kernel and δu(x) is the slowness difference between
the real Earth and the reference Earth model used for evaluating the travel-time function Tij .

17



In this case, the slowness perturbation δu(x) serves as the common parameterization for travel-
time corrections.

Presuming that continuous parameter functions—such as ak(x), a(x) and δu(x) above—are
discretized on a spatial grid, we can generalize these specific parameterizations and others as

cij = bij(xj)
Tu, i = 1, . . . , nj , j = 0, 1, . . . ,m, (3.17)

where the vector u contains a discrete set of parameters for generating travel-time corrections.
It will be convenient to write equation (3.17) alternatively as

cj = Bj(xj)u, j = 0, 1, . . . ,m, (3.18)

where each sensitivity matrix Bj(x) is given by

Bj(xj) =




b1j(xj)
T

b2j(xj)
T

...
bnjj(xj)

T


 . (3.19)

For j = 0 (target event) we also write (3.18) as

c = B(x)u. (3.20)

The unknowns in the calibration inverse problem can now be identified as the parameter
vector u and calibration event locations (xj , tj), j = 1, . . . , m.

3.2.2 Penalty function for the calibration problem

A negative log-likelihood function for the calibration problem is given by

Λcal(u,x1, t1, . . . ,xm, tm;d1, . . . ,dm) = const

+ p−1
m∑

j=1

Ψj(xj , tj,Bj(xj)u;dj)

+

m∑

j=1

Φj(xj , tj) + Φu(u). (3.21)

The constant term (“const”) is not elaborated because it does not depend on any of the problem
unknowns. The first summation includes the data-misfit functions for the calibration arrival
data. These are given in equation (3.12), with equation (3.18) substituting for cj . Each term
of the second summation represents a prior penalty function for the location parameters of a
calibration event. The final term is a prior penalty function for the correction parameters. An
appropriate choice for Φu would depend on the physical nature of the parameters in u.

For this project we assumed that prior probability distributions on x and t are of the
generalized Gaussian type. Further, the epicentral parameters (latitude θ and longitude φ),
focal depth z and origin time were assumed to be independent. Therefore, the prior penalty
function for a calibration event is given by (omitting the subscript j)

Φ(x, t) = const +
1

p∆

∣∣∣∣
∆(θ, φ; θpri, φpri)

σ∆

∣∣∣∣
p∆

+
1

pz

∣∣∣∣
z − zpri

σz

∣∣∣∣
pz

+
1

pt

∣∣∣∣
t − tpri

σt

∣∣∣∣
pt

, (3.22)
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where (θpri, φpri, zpri) is a prior hypocenter and tpri a prior origin time for the event. The function
∆ computes the spherical distance between two geographic points. Thus, σ∆ is the standard
error on the spherical distance of the event epicenter (θ, φ) from (θpri, φpri), while σz and σt are
standard errors on depth and time. We note that the prior penalty function effects hard bounds
on the parameters as the generalized Gaussian orders (p∆, pz, pt) tend toward infinity.

The maximum-likelihood solution of the calibration inverse problem is defined by minimizing
the penalty function Λcal jointly with respect to the correction parameters, u, and the location
parameters (xj , tj) of the (non-GT0) calibration events. How this is best done algorithmically
depends on the type of parameters in u. In designing a minimization algorithm, it is useful
to recognize, by examining the expression for Λcal in (3.21), that, for any fixed value of u,
minimization with respect to the event parameters decouples across events and equates to
performing single-event location independently on each of the calibration events.

3.2.3 The posterior on c

A prior penalty function on the travel-time corrections c, needed for locating the target event, is
provided by a posterior penalty function on c that results from solving the calibration problem.
In the maximum-likelihood framework, we can define the latter in a quasi-Bayesian sense,
whereby unknown parameters other than c are projected from the problem by minimization.
However, since c itself is not an explicit parameter in the calibration problem, but rather is
a mapping of u, projection of other parameters is accomplished by constrained minimization.
Thus, we can state formally

Φc(c;x) = min
u:B(x)u=c

min
x1,t1,...,xm,tm

Λcal(u,x1, t1, . . . ,xm, tm;d1, . . . ,dm). (3.23)

The minimization on the right-hand-side yields a solution of the calibration problem with u
constrained as B(x)u = c. Substituting from (3.21), we also have

Φc(c;x) = const + min
u:B(x)u=c

{ m∑

j=1

min
xj ,tj

[
p−1Ψj(xj , tj ,Bj(xj)u;dj)

+ Φj(xj , tj)
]

+ Φu(u)
}

. (3.24)

One way to interpret this equation is that the minimization over the calibration-event location
parameters transforms the prior log-likelihood on u, −Φu(u), into a posterior log-likelihood on
u. The constrained minimization over u then transforms the posterior om u into a posterior
on c.

Computing the function Φc for use in locating target events is problematical. In general,
Φc does not admit a closed form expression. The alternative of representing Φc in tabular form
is not appealing since a grid of values in n-dimensional c-space would be unmanageably large.
Additional difficulty arises from the dependence of Φc on x. The x-dependence also defies a
closed form representation and would add to the dimensionality of a tabular representation.

3.3 Joint Location/Calibration Uncertainty Analysis

A confidence region on the target-event hypocenter x is obtained by mapping the function Λ̃(x)
in hypocenter space, which in turn requires the evaluation of Φc(c;x) for each grid point x (see
equations (3.5) and (3.8)). If one could evaluate equation (3.23) in closed form, it would be
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possible to separate the computations involved in calibration and target event location. In
general, however, this is not possible without invoking some approximation. In an attempt to
avoid approximations, this project has investigated an approach that bypasses the computation
of Φc by combining the target-event location and calibration problems into a joint inverse
problem. This means substituting equation (3.23) into (3.8) and setting c = Bu, obtaining
(after some rearranging)

Λ̃(x;d) = min
u

{
min
t,σ

Λ(x, t,B(x)u, σ;d)

+ min
x1,t1,...,xm,tm

Λcal(u,x1, t1, . . . ,xm, tm;d1, . . . ,dm)
}

(3.25)

or

Λ̃(x;d) = const + min
u

{
min

σ

[
n log σ + p−1σ−p min

t
Ψ(x, t,B(x)u;d)

]

+
m∑

j=1

min
xj ,tj

[
p−1Ψj(xj , tj,Bh(xj)u;dj) + Φj(xj , tj)

]}
. (3.26)

The computational burden resulting from merging the location and calibration problems is
apparent. To evaluate Λ̃(x;d) for one value of x (i.e. one point in a likelihood map) requires
the minimization of a penalty function with respect to all parameters except x, including the
calibration parameters (u) and calibration event locations (x1, t1, . . . , xm, tm). That is, a
large inverse problem must be solved repeatedly in order to calculate a confidence region on
the target event hypocenter. The practicality of the joint location/calibration approach will
depend on the nature of the parameterization of travel-time corrections.

3.4 Examples for Basic Multiple-Event Location

Computing confidence regions on a target event as part of a joint location/calibration analysis
is a feasible task for the basic multiple-event location problem. In this problem, the travel-time
corrections comprise a simple time term for each station/phase combination, as discussed in
Section 3.2.1 (see equation (3.13)). We have implemented joint inversion uncertainty analysis
for basic multiple-event location as part of a location program, GMEL (Grid-search Multiple-
Event Location), developed under this and previous projects. The GMEL algorithm is described
by Rodi et al. (2002) and Rodi (2006).

Figure 3.1 shows confidence regions for the same Pahute Mesa event used earlier (Figures
2.2 and 2.3), but now including the effects of model errors, which are equated to the uncertainty
in the station/phase time terms estimated from calibration events. We used 32 other explo-
sions at Pahute Mesa and Rainier Mesa as the calibration events. Only one of the calibration
events, a relatively well-recorded event at Rainier Mesa (16 Pn arrivals), was assigned a finite
ground-truth level. The three panels in the figure show the resulting confidence regions under
three assumptions about the GT level of that calibration event: GT0, GT2 or GT5 (at 90%
confidence). We see that the confidence regions, which now take model errors into account, are
larger than when model errors are assumed to be zero (Figure 2.2), and grow as the uncertainty
in the GT calibration event location is increased. Figure 3.2 repeats the GT0 case with various
non-Gaussian pick error distribution: p = 1.5, 1.25 and 1 (left, center, right, respectively).

The confidence regions shown in Figures 3.1 and 3.2 took between 5 and 30 CPU minutes
each to compute on a high-end Linux workstation, the ones for smaller p taking the longest. In
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Figure 3.1: Confidence regions for the Pahute Mesa target event shown in Figure 2.2, but accounting for
uncertainty in travel-time corrections (model errors). The corrections were constrained by 32 calibration
events (other NTS explosions) with one of them assigned a finite GT level: GT0 (left), GT2 (center), or
GT5 (right). The pick error distribution was assumed to be Gaussian (p = 2).
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Figure 3.2: Confidence regions for the same Pahute Mesa event, accounting for model errors as con-
strained by 32 calibration events (see Figure 3.1). The GT calibration event is assumed to be GT0 and
the pick error distribution is non-Gaussian: p = 1.5 (left), p = 1.25 (center), and p = 1 (right).

at least one case (right panel in Figure 3.2) the likelihood function was not mapped sufficiently
well to compute accurate values of τβ, meaning even more computation was needed. To apply
the joint inversion approach with tomographic corrections, therefore, would be prohibitive since
each point on a likelihood grid would require performing a full 3D tomography in conjunction
with calibration event relocation.
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Chapter 4

Two-Stage Uncertainty Analysis

To be computationally practical, in more than the simplest cases, the calculation of calibration
uncertainty must be performed separately from target-event location. This, in fact, is the
traditional practice; the challenge is to accomplish it rigorously and efficiently. In the previous
chapter we mentioned that one way to accomplish the separation was by tabulating a prior
likelihood for the correction vector c as the output of calibration analysis, and then using the
table in the subsequent location of a target event. The difficulty here is that the table would
be too large; e.g. 1014 numbers for 20 corrections sampled at five values each. This chapter
presents a more efficient separation scheme, based on a Gaussian representation of correction
uncertainty.

4.1 Gaussian (Quadratic) Approximation

Our two-stage scheme approximates the prior penalty function Φc(c;x) as quadratic in c. Al-
lowing the quadratic function to be different for different x, we write

Φc(c;x) ≈ Φc(c
∗(x);x) +

1

2
(c − c∗(x))TVc(x)−1(c − c∗(x)), (4.1)

where Vc(x) is a symmetric matrix and c∗(x) is a stationary point of Φc:

∇cΦc(c = c∗(x);x) = 0. (4.2)

When Vc(x) is positive definite—implying Φc is concave near c = c∗(x)—the quadratic ap-
proximation corresponds to the assumption that c has a Gaussian prior probability distribution
with mean c∗(x) and covariance matrix Vc(x).

We now outline algorithms we developed for calculating c∗ and Vc in a calibration analysis
(Stage 1) and using them in locating a target event (Stage 2).

4.2 Stage 1: Calibration

Although the vector c∗ and matrix Vc depend on x, we will not show this dependence in this
section for the sake of notational clarity.

Let û be the maximum-likelihood solution for the correction parameter vector u; i.e., û
minimizes Λcal in equation (3.21) in conjunction with maximum-likelihood estimates of the
calibration event locations. We set c∗ to

c∗ = Bû, (4.3)
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where B is the sensitivity matrix for the target-event corrections. Since Λcal is a minimum at
u = û, equations (3.23) and (4.3) imply that Φc is a minimum at c = c∗. In the absence of
bounds on c, we infer that c = c∗ is a stationary point of Φc.

Our algorithm for calculating Vc is a perturbation technique. The algorithm is adapted
from a method developed by Rodi and Myers (2007) for computing travel-time covariances
(their “implicit” method); we refer the reader to that paper for details about the technique.
Applied here, the algorithm solves a perturbed calibration problem for each of the n corrections,
ci, associated with the target event. Each problem requires minimizing an augmented penalty
function given by

Λ
(i)
cal

(u, . . . ) = Λcal(u, . . . ) +
1

2ρ
(c∗ + εn(i) −Bu)T (c∗ + εn(i) −Bu). (4.4)

The vector n(i) is the ith column of the identity matrix, containing unity in its ith element
and zero elsewhere. The values of the scalars ε and ρ control the numerical stability of the
algorithm. Let û(i) denote the solution of the perturbed calibration problem and define the
residual vector

r(i) = c∗ + εn(i) −Bû(i). (4.5)

Calculating this vector for each of the n perturbed problems we can construct a residual matrix
as

R =
(
r(1) r(2) · · · r(n)

)
. (4.6)

Then Vc is obtained as

Vc = ρ (εR−1 − I), (4.7)

where I is the n × n identity matrix.

We note that the perturbation method is exact if Λcal, minimized with respect to the (xj , tj),
is a quadratic function of u, in which case Φc is quadratic in c. In general, however, the method
can be viewed as a technique for approximating the Hessian matrix of Φc or fitting a quadratic
function to Φc.

4.2.1 Dependence on x

The quantities c∗ and Vc will depend on the target hypocenter x exactly when B, used in
equations (4.3) and (4.4), depends on x. The above algorithms for c∗ and Vc are still valid
when this dependence occurs, but would have to be applied for each value of x of interest.

4.3 Stage 2: Location of a Target Event

Under the Gaussian approximation of Φc, the negative log-likelihood function for the target-
event location problem, equation (3.5), becomes

Λ(x, t, c, σ;d) = const + n log σ +
1

pσp
Ψ(x, t, c;d)

+
1

2
(c − c∗(x))TVc(x)−1(c − c∗(x)), (4.8)
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where Ψ is given by equation (3.6). In general, Vc(x) is a full (non-diagonal) matrix. We have
designed an algorithm to perform single-event location with a penalty function of this form. To
date, the algorithm is only implemented for the case in which c∗ and Vc do not depend on x,
and we describe this case first. This situation occurs with the time-term parameterization of
travel-time correction discussed in Section 3.2.1 (equation (3.13)), i.e. the basic multiple-event
location problem.

The algorithm minimizes Λ in a hierarchical fashion with the solution for c updated in an
outer loop and the solution for the other parameters found inside the loop. Let us define the
reduced penalty function

Λ̄(c;d) = min
x,t,σ

Λ(x, t, c, σ;d). (4.9)

The outer loop of the algorithm minimizes Λ̄ with a nonlinear conjugate gradients (NLCG)
technique (see, for example, Rodi and Mackie, 2001). NLCG is an iterative method that
produces a sequence of estimates c0, c1, . . . that converges to the maximum-likelihood solution,
ĉ.

The kth step of the NLCG iteration requires the evaluation of Λ̄(ck) and the gradient of Λ̄.
These quantities are obtained by performing the minimization in equation (4.9) with c fixed to
ck. That is, single-event location of the target event is performed with travel-time corrections
fixed to their current estimate. Our implementation performs this task with the grid-search
even location program GMEL (e.g. Rodi, 2006). The result of the grid-search minimization,
(xk, tk, σk), converges to the maximum-likelihood solution as the NLCG iteration converges.

4.3.1 Dependence on x

The single-event location algorithm just described could account for the dependence of c∗ and
Vc on x in the grid-search location step, if these quantities were computed on a sufficiently
fine grid in x-space. A more practical alternative may be to embed the NLCG loop inside a
higher level loop that updates the values of c∗ and Vc. The first NLCG solution would use
values evaluated at an initial hypocenter x0. The quantities could then be re-evaluated at the
resulting location solution, x̂, for use in a second NLCG iteration. And so on. The efficiency
and convergence properties of such an approach are a topic for future research.

4.4 Examples of Two-Stage Approach

We implemented the two-stage approach for the problem of basic multiple-event location. We
show examples obtained with the same NTS calibration events, Pahute Mesa target event, and
Pn arrival-time data used in previous examples. The event-station geometry was shown in
Figure 2.2.

4.4.1 Calibration

Using the perturbation algorithm described in Section 4.2, we computed the 6 × 6 covariance
matrix Vc on the travel-time corrections involved with the target event, based on data from 32
calibration events. One of these calibration events was assigned a finite GT level on its location,
as described in Section 2.5.

Table 4.1 lists the correction standard deviations at two of the stations for various GT
assignments. In addition to varying the epicenter error as before (0, 2 or 5 km), we also varied
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Table 4.1: Correction Standard Deviation (sec) at Stations MNV and LAC

Station MNV Station LAC

Or. time Epicenter error (km) Epicenter error (km)

error 0 2 5 0 2 5

0 .13 .17 .28 .17 .20 .30
1 .44 .44 .49 .45 .47 .53
5 .58 .59 .62 .60 .61 .66
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Figure 4.1: The correlation matrix for travel-time corrections at six stations recording the Pahute
Mesa target event. The three panels correspond to different GT levels assigned to the epicenter of the
ground-truth calibration event at Rainier Mesa. The origin time error of the GT event was set to zero.

the origin time GT level (0, 1 or 5 sec). The table shows that the uncertainty in the estimated
travel-time corrections depends primarily on the origin-time error of the GT event.

Figure 4.1 displays the 6 × 6 correlation matrix of the estimated travel-time corrections
for the three of nine GT cases in which the origin time error of the GT event is zero. Figure
4.2 shows the three cases in which the origin time error is 1 second. We see that when the
origin-time error of the ground-truth event is not zero, the estimated corrections are strongly
correlated. Not shown are the cases where the GT origin time error is 5 sec; then the correlations
are even closer to 1.0 than in Figure 4.2.

4.4.2 Confidence regions on the target event epicenter

We generated numerical confidence regions for the Pahute Mesa target event using the travel-
time correction means and covariances obtained from the calibration stage. The likelihood maps
were calculated with the NLCG/grid-search location algorithm described in Section 4.3. We
confirmed numerically that confidence regions on the epicenter do not depend on the origin-time
GT level assumed in calibration, even though the covariance matrices did.
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Figure 4.2: Same as Figure 4.1 except the origin time error of the GT calibration event is 1 second.

Figures 4.3 and 4.4 show confidence regions obtained with our new two-stage approach for
the same cases shown for the joint approach in Figures 3.1 and 3.2. The differences from the
joint location/calibration results are small except for the GT5 case. This may reflect the finer
and more accurate likelihood mapping possible in the two-stage approach owing to its greater
efficiency. The likelihood mapping with the two-stage approach takes only a few seconds of
CPU time, rather than several minutes as in the joint approach. Another possible cause of
the differences between Figures 3.2 and 4.4 is that the Gaussian approximation to the posterior
distribution on travel-time corrections may be less accurate when the GT level of the calibration
event is larger.
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Figure 4.3: Numerical confidence regions for the Pahute Mesa target event, computed with the two-
stage algorithm. The results for different GT levels assigned to the ground-truth calibration event are
compared (as in Figure 3.1). Gaussian data errors were assumed.
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Figure 4.4: Numerical confidence regions for the Pahute Mesa target event obtained under the assump-
tion of non-Gaussian data errors. The order of the generalized Gaussian distribution is p = 1.5 (left),
p = 1.25 (center) or p = 1 (right). The epicenter of the ground-truth calibration event was taken to be
GT0.
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Chapter 5

Conclusions and Recommendations

This project developed a rigorous theoretical framework for uncertainty analysis in seismic
event location, linking travel-time prediction errors (model errors) to uncertainty in travel-time
calibration. A complete uncertainty analysis requires considering the joint location/calibration
inverse problem, but the implementation of such an analysis, without simplifying approxima-
tions, is practical only for simple methods of calibration (e.g. the station time terms assumed
in basic multiple-event location).

The assumption that calibration data determine a Gaussian distribution on travel-time
corrections allows one to factor the joint location/calibration problem into two stages. The cal-
ibration stage finds the Gaussian distribution, while the follow-up stage of target-event location
uses the distribution as a prior on the corrections affecting the target event. We have imple-
mented and tested the two-stage approach for the basic multiple-event location problem and
confirmed that it is significantly more efficient than the complete joint inversion approach. The
confidence regions in Figures 4.3 and 4.4 required at most 1 minute of CPU time for the calibra-
tion stage and less than 5 seconds to compute each confidence region in the location stage. This
indicates that a rigorous location uncertainty analysis employing complex parameterizations of
travel-time corrections is a feasible task using the two-stage approach. Of particular interest
is the case of tomographic corrections, parametrized by 3-D velocity models. The recent work
by Rodi and Myers (2007) provides a starting point for implementing the calibration stage for
this case.

Further research is needed to test the accuracy of the Gaussian approximation used in the
two-stage uncertainty analysis The suitability of this approximation no doubt depends on the
pick error distribution, the number of data and station geometry, the GT location constraints
on calibration events, and the degree of nonlinearity in the travel-time forward problem. An
investigation of this topic could include the exploration of other, more general approximations
to the correction posterior, such as with copulas. Another important topic for further study
is focal depth uncertainty. The formulation and algorithms developed in this project apply
to the computation of confidence intervals on focal depth but our numerical tests considered
only fixed-depth solutions and epicentral confidence regions. Aside from the importance of
focal depth in nuclear monitoring, we can expect focal-depth uncertainty to be significantly
affected by model errors and travel-time nonlinearity, and therefore take good advantage of the
generality of our approach.
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